• HOME
  • Translation service
  • Translation fees
  • Translation examples
  • Translation Quality and Confidentiality
  • Main Translation Fields and Past Record
  • Industrial and Environmental Materials
  • Industrial and Environmental Materials
contact

Translation Example byJEOL Technoservice

(JEOL Global site)

Simple Science (Translation examples)

Simple Science (translation examples)

Along with progression of science, even more questions are raised from various angles.
This page will guide you to the world of “Simple Science” (simply explaining the science and the state-of-the-art technologies) with translation examples.

In this page, a portion of “Simple Science” on the JEOL homepage and other articles are recomposed and translated to be more accessible.

Translation Example Vol.01 Electron Microscope / EM

Electron Microscope (EM)

Relentless exploration to characterize Nano-World

- Studying particles from the Asteroid “ITOKAWA” -

“What can we see by magnifying an object?” To satisfy this curiosity, various inventions were created. One of them is the optical microscope (OM). The smallest object size detectable by the human eye is limited to about 0.2 mm. The OM can help us to see very small objects that are not visible by the human eye. This is achieved by magnifying the small object with the aid of a combination of glass lenses. But even using the maximum magnification of the OM, the OM cannot show us an atom. This is because the OM uses visible light as the illumination beam. That is, the capability of distinguishing different structural objects (resolution of OM) is fundamentally restricted by the wavelength of light. Unfortunately, the size of one atom is greatly smaller than the wavelength of the light.
Ruska and his group (Germany) broke through this resolution limit. They invented an Electron Microscope (EM) that uses an electron beam as the illumination beam, instead of light. The wavelength of the light is as large as 400 to 800 nm (1 nm = 0.000001 mm). However, the “wavelength of an electron beam” is as small as “0.0025 to 0.0037 nm”. This remarkably small wavelength enables the Electron Microscope to resolve (visualize) the world of atoms (a few nm down to 0.1 nm or less).
The OM uses glass lenses to magnify and project the image of an object. In the imaging process, the glass lenses refract the light coming out from the object and change its direction. In comparison, the Electron Microscope (EM) uses electromagnetic lenses (lenses made of electromagnets). The electrons transmitted through or scattered from the object are deflected by the magnetic forces of the electromagnetic lenses and then, a resultant image is magnified onto a viewing screen (fluorescent screen, etc).
Particles collected by “HAYABUSA” (Japanese spacecraft) from the Asteroid ITOKAWA are subjected to various analyses using a Transmission Electron Microscope (TEM), a Scanning Electron Microscope (SEM) and an Electron Probe Microanalyzer (EPMA). TEM and SEM are used for observing structures, morphology and surfaces of the particles. EPMA is used for analyzing the constituent elements in the particles.
The EPMA is an instrument that irradiates the surface of a substance with an electron beam, and measures characteristic X-rays generated from the substance to qualitatively analyze the elements contained in the substance and to perform element-distribution analysis of the substance.

Difference between the Optical Microscopeand the Electron Microscope EPMA used to analyze particles from “ITOKAWA”collected by “HAYABUSA”
Difference between the Optical Microscopeand the Electron Microscope
EPMA used to analyze particles from “ITOKAWA”collected by “HAYABUSA”
光学顕微鏡と電子顕微鏡の違い
はやぶさが持ち帰った小惑星イトカワの微粒子の分析に用いられている電子プローブマイクロアナライザ(EPMA)

電子顕微鏡 (Electron Microscope / EM)

微細を観ることへのあくなき挑戦 ・・・・小惑星イトカワの微粒子を調べる・・・・

「物を拡大して見ると何が見えてくるのか?」この欲求を満たすべく色々な工夫で発明がなされてきました。この一つが光学顕微鏡です。人の目は、せいぜい0.2mm程度の大きさしか識別できません。光学顕微鏡は、人の目には見えない小さな「物」を、ガラスレンズの組み合わせで拡大することにより明らかにしてくれます。しかし、拡大率(倍率)をどんどん上げていけば、原子まで識別できるかといえばそれの答えは残念ながら「NO」です。照明に光を使った光学顕微鏡では、小さな構造を識別する能力(分解能)が低いのです。光の波長よりも小さな構造を識別できないからです。
この限界を破ったのが、ドイツのルスカ等の技術者です。彼等は光のかわりに電子線を照明に用いた「電子顕微鏡」を発明しました。光の波長が400~800nm (1ナノメータは0.1mmの10万分の1)に対し、電子の波長が0.0037nm~0.0025nmと短いので、原子の世界(数nm~0.1nm以下)まで見えるのです。
光学顕微鏡が「物」から出て来る光を、ガラスレンズにより屈折させ光の方向を変えて、像を拡大して見るのに対し、電子顕微鏡では、「物」を透過したり反射(散乱)した電子を、磁界レンズ(電磁石で作ったレンズ)の磁力により電子の方向を変え、像を観察スクリーン(蛍光板など)に拡大して見ます。
はやぶさが持ち帰った小惑星イトカワの微粒子は透過電子顕微鏡(TEM)や走査電子顕微鏡(SEM)でその構造、形や表面を観察した後、電子プローブマイクロアナライザ(EPMA)でどのような元素から構成されているか調べられています。
電子プローブマイクロアナライザは物質の表面に電子線を照射して、そこから発生する特性X線を計測して、物質に含まれる元素の定性分析や元素分布の分析をする装置です。

Translation Example Vol.02 Superconducting Magnet / SCM

Superconducting Magnet (SCM)

Is a SCM actually a permanent magnet?

The electric resistance of some special alloys, such as niobium titanium and niobium tin, becomes 0 ohm when they are cooled by liquid helium (about ?270 ?C).
When making a ring (coil) with the wire made of this kind of alloy (superconducting wire), and applying electric current to the ring (coil) cooled by liquid helium, the current continues to flow forever (permanent current) because of the zero resistance.
If electric current flows through a ring (coil), the coil becomes a magnet. So, a coil with a permanent current flow is a permanent magnet. However, the liquid helium evaporates and decreases. You have to continue to refill liquid helium in order to continuously cool the ring.
The superconducting magnets (SCM) used for nuclear magnetic resonance (NMR) instruments provide a highly homogeneous and stable magnetic field. There is a vertical hole (the bore) that goes right through the center of the cylindrical tank of the superconducting magnet. The magnet generates a strong magnetic field at the center of the bore.
Two tanks are concentrically arranged inside and a group of coils made of superconducting wires is in the innermost liquid-helium vessel. The permanent current in the superconducting wire of the SCM will maintain the magnetic field without connection to any external power supply. As long as you maintain the supply of liquid helium to keep it cool, the current continues to flow in the coil, and the magnetic field is maintained without any external power supply.
Since liquid helium evaporates and decreases little by little, you have to refill liquid helium periodically. In order to reduce liquid helium boil-off, a liquid-nitrogen vessel surrounds the helium vessel. Two liquefied-gas vessels are inside the outer stainless steel vacuum jacket for thermal insulation. Pipes on top of the jacket are used as an outlet for evaporated gasses and an inlet to refill with liquefied-gasses.

伝導磁石・取扱説明書 ⇒ Instruction manual for SCM
(Japanease)   〈English〉
Translation example: Instruction manual for SCM
翻訳例: 伝導磁石・取扱説明書

超伝導磁石 (Superconducting magnet: SCM)

超伝導磁石は永久磁石ってほんと?

特殊な合金(ニオブチタンやニオブスズ)は液体ヘリウム(約-270℃)で冷やすと電気抵抗が0オームとなります。その合金を線材(超伝導線)にし、丸く巻いて環(コイル)にして、液体ヘリウムで冷やして電流を流すと、電気抵抗が無いので電流は流れ続けます(永久電流)。コイルに電流が流れると磁石になるので、永久電流が流れるコイルは永久に磁石となります。しかし液体ヘリウムは蒸発して減少していくので、冷やし続けるためには液体ヘリウムを補充しなければなりません。
核磁気共鳴装置 (NMR) で使う高均一度で,高安定度な超伝導磁石は、円筒型タンクの中心部に垂直に貫通した穴(ボア)があり、その中央部に強磁場を発生します。
内部は同心状に2つのタンクが配置され、内側の液体ヘリウム槽には超伝導線で巻かれたコイルが設置されています。超伝導コイルは、外部電源から切り離した永久電流によって、永久磁石を作ります。液体ヘリウムで冷やし続ける限り、外部電源無しに電流が流れ続け、磁場を保ちます。
液体ヘリウムは少しずつ蒸発するので、定期的に補充しなければなりません。液体ヘリウムの蒸発を低減するため,その外側に、液体ヘリウム槽を取り囲むように液体窒素槽が配置されています。2つの液化ガス槽は,断熱のためステンレス製の真空タンクに収容されており,タンク上方に蒸発ガスの排出と,液化ガスの補給のための円筒が立てられています。

Translation Example Vol.03 Nuclear Magnetic Resonance / NMR

Nuclear Magnetic Resonance (NMR)

How do we figure out the 3D structures of proteins?
- Let’s unravel the secrets using nuclear resonance. -

Proteins are one of the most important components of our bodies. Proteins are composed of atoms, such as carbon, oxygen, hydrogen, and nitrogen. But what is the sequence of the connections of those atoms, and what is the spatial relationship between the atoms? Nuclear Magnetic Resonance (NMR) is one of the tools used to examine the inner structure of proteins and research the planar and 3D structures.
Some atoms, such as hydrogen, have nuclei that behave like small magnets. These small magnets spin like a spinning top, and will swing when placed in a large magnet (external magnet field) in the same way that the spinning top swings around its axis. This swinging movement is called “precession”, and the swinging cycle (frequency) is determined by each nucleus.
When a radio wave that has the same frequency as that of the precession is applied to an atom, the energy of the radio wave is absorbed and released (this is called “resonance”). We can detect the resonance by measuring the released energy as an electric signal. The electric signal caused by the resonance is called “NMR signal”.
When the magnetic field is 11.74 T (tesla), a hydrogen nucleus (proton, 1H) resonates with a 500 MHz radio wave. This resonance frequency varies depending on the specific nucleus, for examples, 125 MHz for 13C and 50 MHz for 15N.
The resonance frequency of the proton NMR signal slightly varies depending on a type of molecular group, such as CH3 (methyl group), CH2 (methylene group), and H2O (water), even though the signal comes from the same proton. This frequency separation is called a chemical shift because it is caused by the difference of the chemical environment around the nucleus.
The NMR signals are also split by the mutual interference (spin coupling), and the NMR signal intensity varies depending on the distance between atoms (NOE: Nuclear Overhauser Effect) when the atoms are spatially close. So, measuring such information enables us to analyze the 3D structure of substances.
The nuclear magnetic resonance (NMR) instrument has had a great impact on the analysis of materials like organic compounds such as medicines and agricultural chemicals, polymer materials such as plastics and polyethylene, and organic substances (mainly living substances like proteins) that consist of atoms such as carbon, oxygen, hydrogen, nitrogen, and phosphorus.
Especially, since NMR instruments can reveal the planar structures and also 3D structures to show how the atoms connect with each other, the NMR instrument is indispensable for the analytical investigation of the above organic compounds.
Furthermore, NMR instruments are used for analysis of solid materials, including measurements of the diffusion factor that indicates the performance of a battery such as the lithium-ion battery, and to analyze environmental hormones, so that the applications for NMR continue to grow.

Basic block diagram of the NMR instrument

核磁気共鳴装置 (Nuclear Magnetic Resonance: NMR)

たんぱく質の立体構造ってどうやってわかるの?・・・原子核の共鳴で謎を解く

蛋白質は炭素、酸素、水素、窒素、といった原子が組み合わされた、私達の身体の大切な構成成分です。それでは、蛋白質の中の原子はどのような順番でつながり、どの原子同士が立体的に近いのでしょうか? 蛋白質の内部を調べて、その平面構造や立体構造を解析する装置の一つが、核磁気共鳴装置(NMR装置)です。
原子の中には、水素のように原子核が小さい磁石の性質をもっているものがあります。このような小さい磁石はちょうど「こま」のように自転していますが、これを大きな磁石(外部磁場)の中に入れると、こまの首振り運動と同じような振舞をします。この首振り運動(歳差運動といいます)の回転する周期は決まっていて、ちょうどその周期と同じラジオ波を外部から加えると、エネルギーの吸収・放出が起こります(共鳴といいます)。原子核から放出されるエネルギーを電気的に測ることで共鳴が起きたかどうかが分かります。その電気信号をNMR信号といいます。磁場強度が11.74T(テスラ)では水素核(1H)は500MHzのラジオ波で共鳴します。この共鳴周波数は原子核の種類によって異なり、13C核では125MHz、15N核では50MHzの周波数のラジオ波で共鳴します。
NMR信号は、同じ水素核であってもCH3(メチル基)、CH2(メチレン基)H2O(水)などで共鳴周波数が異なり、これは核を取り巻く化学的環境の違いによって生じるので、ケミカルシフト(化学シフト)といいます。また近接する原子との相互作用(スピン結合)で共鳴信号が分裂したり、信号強度が変化(核オーバーハウザー効果: NOE)しますので、これらの情報を測定すると立体的な物質の構造を解析できます。
核磁気共鳴(NMR)装置は、薬品や農薬のような有機化合物、ビニール、ポリエチレンといった高分子材料、核酸、タンパク質のような生体物質を中心とした炭素、酸素、水素、窒素、リンといった原子からなる有機物、などの分析に最も威力を発揮します。特に、その原子のつながりである平面構造や立体的構造まで知ることができるため、これら有機化合物の分析では中心的な位置を占めています。 更に、固体材料の解析、リチウムイオン電池等の性能の指標となる拡散係数の測定、環境ホルモンの分析等にも利用され、その用途は広がっております。

Translation Example Vol.04 Mass spectrometer / MS

Mass spectrometer

Has PCB contamination spread even to Antarctica?
- Let’s solve the secrets of compounds by measuring their mass. -

When examining the penguins and their foods in Antarctica, a tiny amount of PCB (polychlorinated biphenyl) has been detected by using the Mass spectrometer.
PCB is an insulating material that is chemically stable and is frequently used in the electric products. But, if it enters a living body, it becomes hazardous due to its accumulation and toxicity. Dioxins (one type of PCB) are known to be especially toxic.
The PCB contamination might be spread due to the air movements and the food chain, and in fact, PCB has been detected even in the polar bears at the North Pole.
The Mass spectrometer is an indispensable analytical instrument for detection and analysis of the low concentrations of PCB and environmental hormones, and is fully used in the world.
Using the mass spectrometer (MS spectrometer), you can accurately measure the mass (heaviness) of each component of a substance, and from the masses, you can determine what compounds are contained in the substance, as well as the quantities of each compound.
As a basic theory, the mass spectrometer uses the properties of the ion (atom or molecule transformed into electrically charged particles). That is, when an ion is accelerated to a suitable velocity and passed through a magnetic field, the trajectory direction of the ion is altered by the force of the magnetic field with the amount of alteration depending on the mass (heaviness) of the ion.
This theory is similar to that of the Braun tube (cathode-ray tube: CRT) of a television, which uses electrons whose trajectory directions are altered by being passed through a magnetic field.
As shown in Figure (a), when all ions are accelerated by the same energy at the left side, if the strength of the magnetic field is constant, the trajectories of the ions bend due to the influence of the magnetic field, with the small (light) mass ions bending more than the ions with larger (heavier) mass numbers. Therefore, if you can acquire the mass spectrum by detecting the positions where the ions arrive, you can know what ions the substance consists of (qualitative analysis), and the quantity (quantitative analysis).
For an actual mass spectrometer, the type and quantity of ion are measured using a detector by fixing the trajectory and varying the strength of the magnetic field as shown in Figure (b).
The detected signals are displayed as many peak groups in a graph (c) called the mass spectrum, where the horizontal axis indicates the mass-to-electric-charge-ratio (m/z) and the vertical axis indicates the intensity of each ion (quantity).
In order to perform the separation of a mixed sample with high sensitivity, the gas chromatograph (GC: an instrument for separating mixed samples) has been combined with the mass spectrometer. This instrument has developed into the Gas Chromatograph Mass Spectrometer (hereafter abbreviated GC/MS), and has become an important tool used in a wide range of fields for measuring dioxins, environmental hormones, organic compounds in tap water, and drug concentrations in blood. The GC/MS is also used as a tool to develop new drugs.
Among the gas chromatograph mass spectrometers, there are many types of instruments, from the instrument installed on a space probe to measure the elements of Mars or a comet, to the instruments used to analyze proteins to determine the structures.
The gas chromatograph mass spectrometer will be more widely used in the environment and life science field, and continuing development is expected.
In a similar way, liquid chromatography (LC) has been combined with the mass spectrometer, to develop the Liquid Chromatograph Mass Spectrometer (LC/MS). The LC/MS is widely applied as an analytical tool in the fields related to volatile as well as nonvolatile compounds.
Furthermore, in recent years, a new type of the mass spectrometer, TOF/MS (Time-of-Flight Mass Spectrometer) has been developed. TOF/MS acquires the mass of ion by measuring the flight time after the ion is accelerated by an acceleration voltage until it arrives at the detector.
Also, the development of the MALDI ionization method, that was awarded the Nobel Prize in Chemistry, makes the mass analysis of biological macromolecules such as proteins easier.
As seen above, the mass spectrometer continues to be developed.

Basic theory a mass spectrum

質量分析装置

南極にもPCB汚染は広がっているのでしょうか?・・質量(重さ)を測定し化合物の謎を解く

南極のペンギンやその食べ物を質量分析装置で調べると、微量なPCB(ポリ塩化ビフェニル)が検出されました。PCBは化学的に安定な絶縁物質で電気製品によく使われますが、体内に入ると蓄積され毒性があるので危険です。PCBの仲間であるダイオキシン類は特に強い毒性があることが知られています。PCBは大気移動や食物連鎖により汚染が拡散していると考えられ、北極の白熊からも検出されております。質量分析装置は低濃度のPCBや環境ホルモンなどの検出や分析に欠かせない分析装置として世界中で活用されている装置です。
質量分析装置(MSスペクトロメータ)は、物質を構成している個々の化合物の質量(重さ)を正確に測定し、その重さからその化合物が何で、どれ位あるのかを調べる装置です。質量分析装置の基本原理は、イオン(電気を帯びた原子、分子)を一定の速度に加速して磁場の中を通過させてやると、そのイオンの持っている質量数(重さ)に応じて磁場の強度により軌道が曲げられるという性質を利用したものです。これは、電子が磁場を通って軌道を曲げられる性質を利用して作られたテレビのブラウン管の原理と似ています。
図a)のように、左から同じエネルギーでイオンを加速させたとします。磁場の強さを一定にすると、磁場の影響で質量の小さい(軽い)イオンから順に軌道が曲げられていきます。ですから到達するイオンの位置を検出する質量スペクトルを得ることによって、どのような化合物であるかがわかり(定性)、その量を知ること(定量)ができます。
実際の質量分析装置は、図b)のようにイオンの軌道を一定にしておいて、磁場の強さを変化させることによって、各イオンの種類と量を一つの検出器で測定します。検出されたものは、質量スペクトルといわれ、通常横軸に質量電荷比(m/z)、縦軸にイオン強度(どれだけの量があるか)をとった多くのピーク群からなるグラフ(c)として示されます。
質量分析計にガスクロマトグラフ(GC: 混合試料を分ける装置)が結合され、混合物を高感度で分離分析する手法として、ガスクロマトグラフ質量分析計(以下GC/MSと略します)が発展し、これによりダイオキシン、環境ホルモン、水道水中の有機化合物あるいは薬の血中濃度測定、また新薬開発のための道具として、広範な分野で用いられるようになりました。
ガスクロマトグラフ質量分析計には、宇宙探索船に載せて火星や彗星の成分を測るような装置から,蛋臼質の構造を決めるのに用いられる装置まで多くのタイプがあり、環境・生命科学の分野で広く活躍し、この装置は今後ますます発展することが期待されている分析計です。
また、液体クロマトグラフ(LC)と質量分析計(MS)を接続した液体クロマトグラフ質量分析計(LC/MS)も、揮発性物質から難揮発性物質までを対象とした幅広い分野に適用されている分析機器です。
さらに近年、新しい質量分析装置として、イオンが加速されて検出器に到着するまでの飛行時間を計測して質量を求める飛行時間型質量分析計(TOF/MS)が開発されました。また、ノーベル化学賞の受賞対象となったMALDI(マルディー)イオン化法の開発により、タンパク質などの生体高分子の質量分析が容易となるなど発展を続けています。